

Standards & Interop in ICT ETPs Panel 4 Convergence: The 'must haves'

Software interoperability, profiles, building blocks, architectures and middleware

Eric Schutz
VP, External Technology Coordination

STMicroelectronics

Moore's law Integration doubles every 18 months

The cost of a transistor has been divided by one million in thirty years

Complexity: Managing the productivity gap

Convergence

- Moore's law enables the dream of access to people and content
 - anytime, anyplace, with anyone
- Multimedia everywhere: PC, Home, Office, Car, Plane, Outdoor, ...
- Isolated worlds of connected devices
- Transistor -> IC -> μP -> SoC : System = HW + SW

Hardware

- The complexity challenge -> IP reuse, raise abstraction level
- The power challenge -> multi-processor/multi-core -> additional SW challenge

Software

- Proliferation of : target devices, OS, languages, applications, ...
- Challenges: Integration, portability, real-time, reliability, power efficiency,

Hardware: Open SoC Design Platform

- SPRINT: Standards for interoperable and reusable IP
 - IP-tool interoperability, e.g. SPIRIT API
 - IP-IP interoperability, e.g. VSI, SPIRIT, SystemC,
 - Increase abstraction level to address complexity gap
 - From RTL (Register Transfer Level) to TLM (Transaction Level Modeling)
- Benefits of the approach
 - Cheaper and faster SoC integration
 - IP reuse, automation of IP integration and SoC verification
 - Stimulation of SoC design ecosystem
 - Effective use of innovation capacity, increase of innovation speed
 - Low entry barrier and sizeable market for SMEs
 - Enabler to focus on innovation and differentiation
 - Share costs & risks of developing non-differentiating IP
 - Avoid duplication in development effort -> « HW Open Source »

Software: Open Platform

- At System-level: <u>Components</u>
 - Enable faster System Integration
 - Must Have:
 - Programming Model for Heterogeneous Multi-Processing
 - Good granularity

- At Processor-level: <u>CLI</u>
 (Common Language Infrastructure)
 - Goal: Unified tools framework
 - Must Have:
 - Avoid tools fragmentation without loosing performance
 - Portability at no performance penalty

- "Pure" Software Entity
 - Enable fast system integration
 - Expectable results through component programming model and run-time support
 - Portable and efficient through advanced CLI compilation technology

Software: Focus on innovation and differentiation

- Create software infrastructures that allow "pure software" differentation
 - Open CLI standards to enable innovation
 - Increased coverage of language
 - Effective interoperability between components using different languages
 - Share the costs & risks of developing non-differentiating SW
 - Through Component reuse
- The importance of Open source for innovation
 - Open Source is a promising answer to foster innovation
 - Open community that generates good quality results
 - Components and Tools:
 - Structured community (ECLIPSE, GNU^(*) Portable.Net, ObjectWeb, ...)
 - Provide SW debugging, Traceability and Roadmap

